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Validity is the "bottom line" in evaluating the appropriateness of test-score

interpretations, and provides a general framework for evaluating measurements. My thesis is

that generalizability analyses play a central role in this framework.

I will examine the relationship between generalizability and validity from four points of

view. First, generalizability coefficients provide upper bounds on validity. Second,

generalization is one step in most interpretive arguments, and therefore, generalizability is a

necessary condition for the validity of these interpretations. Third, the interpretive argument

determines the appropriate estimate of generalizability. And fourth, generalizability provides

justification for the syntactical content of construct labels.

1. Generalizability Provides an Upper Bound on Validity

Using classical test theory, we can show that criterion-related validity coefficients will be

less than or equal to the square root of the reliability of the test scores. This statistical

relationship between reliability and validity was initially derived for criterion-related validity

coefficients, but it has been generalized to all cases. For example, if we want to estimate some

theoretical construct for which we d& not have a criterion measure, we can still assume that the

construct has some definite value for each person and treat these values as a conceptual criterion.

We can then imagine correlating our measurements with this conceptual criterion. In spite of the

fact that we do not actually have the criterion, the statistical argument that the correlation of test

scores with the conceptual criterion would be less than or equal to the square root of the

reliability of the test scores still applies.

But clearly, the relationship between reliability and validity is more complicated than that

presented in elementary textbooks. The core problem is that, in practice, we have many different
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kinds of reliability coefficients, which may have very different values, and therefore different

square roots. For example, in performance testing, it is not unusual to find inter-rater reliabilities

in the .90s and internal consistency reliabilities in the .30s or .40s. But validity is taken to be a.

unitary concept. A test-score interpretation does not have multiple validities. So, given that we

have multiple reliability estimates to choose from, the role of reliability in providing an upper

bound on validity is, at best, a bit ambiguous.

The derivation showing that a reliability coefficients can provide an upper bound on

validity also applies (with slight modifications) to generalizability coefficients. And since

generalizability theory allows us to include all potential sources of error in a single coefficient, it

helps to resolve the ambiguity created by multiple reliability coefficients.

The appropriate estimate of the G coefficient is not necessarily easy to define, depending

as it does, on the design of the measurement procedure and the intended interpretation and use of

the scores, but in most cases it is possible to define a G coefficient that includes all potential

sources of error involved in using a measurement procedure for a particular purpose. For

example, if the results of a performance test are to be used to estimate the general level of

competence in an activity, we would probably want to g.eneralize over tasks, raters, and

occasions, plus residual variance, and therefore the G coefficient would reflect all of these

sources of error. Ambiguity in the definition of the coefficient is less of a problem in

generalizability theory than in classical test theory.

In general, the more detailed analysis of error in G theory will lead to larger estimated

standard errors and lower coefficients than would result from classical reliability theory.

However, in some cases, G theory may yield generalizability coefficients that are larger than

traditional estimates of reliability. For example, if the test score is being used as an estimate of a
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state variable, with the score obtained on a particular occasion being used to estimate the trait on

that occasion, test-retest variability would not interfere with the inference. The measurement and

the criterion could be perfectly correlated even if they both vary from occasion to occasion and

therefore have low test-retest reliability. In fact, if the test score and the criterion vary in more-

or-less the same way as a function of occasion, this dependency could enhance the test-criterion

correlation as it lowers test-retest reliability.

In summary, the square root of an appropriately defined G coefficient constitutes an

upper bound on validity. Generalizability theory tends to produce a more precise definition of

the upper bound than is provided by classical reliability theory, because it provides a more

thorough analysis of sources of error.

2. Generalization is a Critical Step in Most Interpretative Arguments

We can think of the interpretation assigned to test scores in any particular context in

terms of a sequence of inferences leading from the score to conclusions and decisions. These

inferences plus the assumptions on which they rest constitute the interpretive argument defining

a proposed interpretation. The separate inferences in the argument must form an unbroken chain

if the argument is to be considered valid. A failure of any link in the chain invalidates the

argument as a whole. The interpretive argument provides an explicit and fairly detailed

specification of the proposed interpretation, and therefore, provides guidance for validating the

proposed interpretation. The validation is expected to provide adequate evidence for all of the

inferences and assumptions in the argument.

Almost all interpretive arguments involve generalization as one major inference. A

typical interpretive argument might start with a score based on examinee responses to some tasks
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(e.g., test items, performance tasks, questionnaire items). It is assumed that the responses were

collected under appropriate circumstances and scored using reasonable criteria, and therefore,

that the score represents an accurate indication of the quality of the examinee's performance on

those tasks under those conditions of observation.

In essentially all cases, this bare-bones interpretation does not get us where we want to

go. So, the next step is to generalize the results to some universe of similar tasks or items. From

the initial conclusion that the examinee did relatively well or badly on a particular set of tasks,

we infer that the examinee can do this "kind of task" relatively well or badly. We also usually

want to generalize over conditions of observation (raters, occasion, context, etc.). The inference

from particular observations to a general conclusion about expected or typical performance over

a universe of possible observations is an inductive inference. In G theory, this universe of

possible observations is referred to as the universe of generalization, and the different kinds of

conditions (e.g., tasks, raters, occasions) are referred to as facets. The interpretation typically

involves additional inferences (e.g., to theoretical constructs, decisions), but my interest here is in

generalization.

The justification for the inductive inference from the observed score to the universe score

( the expected value over the universe of generalization) rests on certain law-like assumptions,

which I will refer to as "invariance assumptions" or "invariance laws." An invariance

assumption states that the results of applying the measurement procedure to a person (or other

object of measurement) would not vary much if certain conditions of observation were changed.

Invariance over raters assumes that the results would be approximately the same if we had

employed a different set of qualified raters. Invariance over tasks assumes that the results would

be about the same if we used another sample of tasks from the same pool of tasks. And, stability,
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or invariance over occasions, suggests that the results would not vary much from one occasion to

another.

Generalizability analyses provide empirical checks on these invariance assumptions. To

the extent that the variance components associated with a facet (main effect and interactions) are

small, the results are invariant over samples of conditions of this facet. In applying a

measurement procedure, the required invariance assumptions may hold because there is very

little variation over the conditions of a facet, or because the samples of conditions from the facet

included in the measurement are fairly large.

To the extent that the overall standard error is small (and the corresponding G coefficient

is large) it is reasonable to generalize over all facets included in the defmition of error. On the

other hand, a large value for the standard error indicates that one or more of the invariance

assumptions has failed, and that the kind of generalization proposed in the interpretive argument

is not justified. And as indicated earlier, if any inference in the chain fails, the argument as a

whole fails. Therefore, an appropriate level of generalizability is a necessary condition for the

interpretive argument to be plausible, that is, for the interpretation to be valid.

However, even if generalizability is very high, indicating that all of the invariance laws

hold, and therefore that generalization is justified, some other link in the chain may fail. So,

again, generalizability is not a sufficient condition for validity.

Note that poor generalizability can sometimes be corrected. Using a mutifaceted analysis

of error, it is possible to identify those sources of error that are particularly large, and it may be

possible to reduce these errors by adjusting the measurement procedure. For, example if the

variance components involving raters tend to be particularly large, it may be possible to improve

rater training or to increase the number of raters contributing to each observed score.
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We can think of a failure of generalizability as invalidating one or more invariance

assumptions, and therefore, as invalidating the interpretive argument.

3. The Proposed Interpretation Determines the Appropriate Generalizability Coefficient

Validation requires the development of evidence that justifies the proposed interpretation,

or meaning, of scores. The scores must have an acceptable level of the right kind of

generalizability for the interpretive argument to be plausible.

In this section, I will argue that the requirements inherent in validating a proposed

interpretation determine the appropriate standard error and G coefficient.

As noted earlier, one problem with the use of reliability coefficients to set upper bounds

on validity is the multiplicity of possible estimates of the reliability. There is no reason to expect

different estimates of reliability(e.g., internal homogeneity, test-retest, interrater) to be even

approximately equal, and there is no clear basis for choosing one of these estimates in preference

to the others.

On the face of it, this situation is even worse in generalizability theory. The number of

possible generalizability coefficients is much larger than the number of reliability coefficients in

common use. We can choose to generalize over raters, or over occasions, or over tasks/items, or

over any two of these facets or over all three. And of course, we can potentially include any

additional facet we can imagine and from which we can draw a sample of conditions.

Furthermore, we can consider facets to be fixed or random, or to involve sampling from a finite

universe. And we can incorporate at least three different kinds of error (i.e., relative, absolute,

regression-based). The total number of possible options is potentially quite large.
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However, the definition of the standard error and of the corresponding generalizability

coefficient are in fact tightly constrained by the proposed interpretation, and in particular, by the

invariance assumptions associated with the proposed interpretations. The interpretive argument

specifies the facets over which generalization is to occur and the range of conditions to be

included in each facet and therefore the range of conditions over which generalization is to occur.

Note that it is considerations about the plausibility of the overall interpretation (traditionally a

validity issue) that are driving the definitions of the standard error and G coefficient.

The kind of error to be employed also depends on how the scores will be used. If the

scores will, for example, be compared to some fixed standard of performance, an absolute error

term is appropriate. If the scores will be used to make comparisons among individuals, a relative

error is appropriate. Again, these are essentially validity issues.

The point here is that generalizability, like validity, depends on the proposed

interpretation. If we interpret a score as a measure of an enduring trait (e.g., trait anxiety), we

expect invariance over time, and therefore require that scores be generalizable over some

extended period of time. If we interpret the score as a measure of a transitory, contingent state

(e.g., state anxiety), we do not expect invariance over occasions, and therefore do not require

generalizability over occasions. A trait interpretation assumes invariance over occasions and

therefore requires evidence for invariance over occasions. A state interpretation treats the

specific occasion on which the observation is made as a fixed part of the interpretation, and

therefore does not require invariance over occasions.

The definition of an appropriate generalizability coefficient depends mainly on the

proposed interpretation of the scores.
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4. Generalizability Supports the Syntactical Content of Construct Labels

As noted above, generalizability is closely connected to the overall validity of a proposed

interpretation in two reciprocal ways. Generalizability limits the interpretation, by limiting the

extent to which the scores can be generalized; The interpretive argument can't assume

invariance over a facet if scores are not invariant over the facet. In the other direction, the

proposed interpretation determines the facets to be included in the standard error and the

generalizability coefficient, and the way in which the facets will be defined (e.g.,broadly or

narrowly).

The relationship of generalizability to validity can also be described in linguistic terms.

The interpretation assigned to test scores can be thought of as the meaning, or semantic content,

of the attribute label or construct label. Validation provides the supporting evidence for

interpreting the scores, and thereby supports the proposed semantic content of the attribute label.

A part of the semantics of any term is its syntax, which specifies how the term is to be

used. A noun can be used in one way; a verb is used in a different way. The attributes that we

assign to objects of measurement function as adjectives, or more precisely using the terminology

of first-order predicate logic, as predicates. The syntax of attributes, or predicates, depends

mainly on the units to which they apply. Using the example mentioned earlier, trait anxiety can

be represented as a one-place predicate, with persons as the sole argument:

A1(p) = ap

State anxiety is a two-place predicate, with persons and occasions as the two arguments:

As(p,o) = apo
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It is meaningful to talk about the trait anxiety of a person without specifying the occasion, but it

is not meaningful to talk about state anxiety without specifying implicitly or explicitly, an

occasion.

In either case, the observed score used to estimate the attribute depends on many

conditions of observation. The world is much more complicated than our models of the world.

The observed score can be represented as

Xpom_.

Indicating the score obtained from person, R, on occasion, o, using items, I, raters, R etc.

If we take Xp,3111... as our estimate of Ar(p), we are assuming that we can disregard any

dependence on occasions, items, and raters, etc. If this assumption is to be viable, measures of

trait anxiety must be largely invariant over these facets. In generalizing over certain facets, we

are purposely simplifying our model of reality to make it more amenable to concise description

and analysis. Generalization is over all facets other than persons, because the trait has been

defined as a one-place predicate, with persons as the sole argument. This choice is part of the

meaning of the attribute, the syntactical part of the overall interpretation.

For state variables, a different choice is made. State variables are defined as two-place

predicates, which apply to person-occasion combinations. Therefore, for state variables, we do

not generalize over occasions, because generalizing over occasions would not be consistent with

the syntax of the attribute. A state variable is expected to change from one occasion to another,

and these variations over occasions are part of the variability of interest. As a result, there is no

reason to generalize over occasions, or to consider variability over occasions as a source of error.

The syntax of a term is a part of the meaning of the term. Validation justifies a particular

interpretation (specified by the interpretive argument) for scores. Generalizability justifies the
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invariance assumptions in the interpretive argument, and thereby, justifies the use of a certain

syntax in describing scores. Again generalizability is a necessary but not sufficient condition for

validity.

Overview

The four points that I have tried to make are essentially four ways of looking at the same

relationship. Central to any interpretation are assumptions about the syntax of the attribute; these

assumptions specify the kind of units to which the attribute applies, and by implication, the

conditions of observation that are considered irrelevant to the interpretation. Most attributes

apply to simple units (e.g., persons, or persons in particular settings), and their interpretive

arguments involve generalization over all other conditions of observation. The invariance

assumptions justifying this generalization define the sources of error to be included in the

standard error and G coefficients, and these statistics, in turn, provide empirical checks on the

invariance assumptions.

From each of these four perspectives, generalizability can be seen as a necessary but not

sufficient condition for validity. The invariance assumptions are an integral part of validity, and

standard errors and G coefficients quantify (in different ways) how well the invariance

assumptions hold.
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